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The onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied ana-
lytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermopho-
resis. The analysis reveals that for a typical nanofluid (with large Lewis number) the prime effect of the
nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles, the contribution of
nanoparticles to the thermal energy equation being a second-order effect. It is found that the critical ther-
mal Rayleigh number can be reduced or increased by a substantial amount, depending on whether the
basic nanoparticle distribution is top-heavy or bottom-heavy, by the presence of the nanoparticles. Oscil-
latory instability is possible in the case of a bottom-heavy nanoparticle distribution.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The term ‘‘nanofluid” refers to a liquid containing a dispersion
of submicronic solid particles (nanoparticles). The term was coined
by Choi [1]. The characteristic feature of nanofluids is thermal con-
ductivity enhancement, a phenomenon observed by Masuda et al.
[2]. This phenomenon suggests the possibility of using nanofluids
in advanced nuclear systems [3]. Another recent application of
nanofluid flow is nano-drug delivery [4].

A comprehensive survey of convective transport in nanofluids
was made by Buongiorno [5], who says that a satisfactory explana-
tion for the abnormal increase of the thermal conductivity and vis-
cosity is yet to be found. He focused on the further heat transfer
enhancement observed in convective situations. Buongiorno notes
that several authors have suggested that convective heat transfer
enhancement could be due to the dispersion of the suspended
nanoparticles but he argues that this effect is too small to explain
the observed enhancement. Buongiorno also concludes that turbu-
lence is not affected by the presence of the nanoparticles so this
cannot explain the observed enhancement. Particle rotation has
also been proposed as a cause of heat transfer enhancement, but
Buongiorno calculates that this effect is too small to explain the
effect. With dispersion, turbulence and particle rotation ruled out
as significant agencies for heat transfer enhancement, Buongiorno
proposed a new model based on the mechanics of the nanoparticle/
base-fluid relative velocity.
ll rights reserved.
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Buongiorno [5] noted that the nanoparticle absolute velocity
can be viewed as the sum of the base-fluid velocity and a relative
velocity (that he calls the slip velocity). He considered in turn se-
ven slip mechanisms: inertia, Brownian diffusion, thermophoresis,
diffusiophoresis, Magnus effect, fluid drainage and gravity settling.
He concluded that in the absence of turbulent effects it is the
Brownian diffusion and the thermophoresis that will be important.
Buongiorno proceeded to write down conservation equations
based on these two effects.

The Bénard problem (the onset of convection in a horizontal
layer uniformly heated from below) for a nanofluid was studied
by Tzou [6,7] on the basis of the transport equations of Buongiorno
[5]. In the present paper the corresponding problem for flow in a
porous medium (the Horton–Rogers–Lapwood problem) is studied.
We will assume that nanoparticles are suspended in the nanofluid
using either surfactant or surface charge technology. This prevents
particles from agglomeration and deposition on the porous matrix.

For completeness, we mention that a substantially different
treatment of the Bénard problem for a nanofluid has been given
by Kim et al. [8–10]. These authors simply modified three quanti-
ties that appear in the definition of the Rayleigh number, namely
the thermal expansion coefficient, the thermal diffusivity and the
kinematic viscosity.

We are not aware of any publications on convection of nanofl-
uids in porous media as such. (We are aware of the paper by Tsai
and Chein [11] who modelled a microchannel heat sink, with a
nanofluid, as a porous medium.) There have been studies done
on convection in porous media with thermophoresis particle depo-
sition (e.g., [12]) but an essential feature of nanofluids is that with
a special treatment particle deposition can be made negligible.
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Nomenclature

c nanofluid specific heat at constant pressure
cp specific heat of the nanoparticle material
ðqcÞm effective heat capacity of the porous medium
dp nanoparticle diameter
DB Brownian diffusion coefficient, given by Eq. (4)
DT thermophoretic diffusion coefficient, given by Eq. (8)
hp specific enthalpy of the nanoparticle material
H dimensional layer depth
jp diffusion mass flux for the nanoparticles, given by

Eq. (3)
jp;T thermophoretic diffusion, given by Eq. (7)
k thermal conductivity of the nanofluid
kB Boltzmann’s constant
km effective thermal conductivity of the porous medium
kp thermal conductivity of the particle material
Le Lewis number, defined by Eq. (34)
NA modified diffusivity ratio, defined by Eq. (38)
NB modified particle-density increment, defined by Eq. (39)
p� pressure
p dimensionless pressure, p�K=lam

q energy flux relative to a frame moving with the nano-
fluid velocity v

Ra thermal Rayleigh–Darcy number, defined by Eq. (35)
Rm basic-density Rayleigh number, defined by Eq. (36)
Rn concentration Rayleigh number, defined by Eq. (37)
t� time
t dimensionless time, t�am=rH2

T� nanofluid temperature
T dimensionless temperature, T��T�c

T�h�T�c

T�c temperature at the upper wall
T�h temperature at the lower wall
ðu;v ;wÞ dimensionless Darcy velocity components ðu�;v�;w�Þ

� H=am

v nanofluid velocity
vD Darcy velocity ev
v�D dimensional Darcy velocity ðu�; v�;w�Þ
VT thermophoretic velocity
ðx; y; zÞ dimensionless Cartesian coordinates ðx�; y�; z�Þ=H; z is

the vertically upward coordinate
ðx�; y�; z�Þ Cartesian coordinates

Greek symbols
am thermal diffusivity of the porous medium, km

ðqcPÞf~b proportionality factor, given by Eq. (6)
l viscosity of the fluid
~l effective viscosity of the porous medium
q fluid density
qp nanoparticle mass density
r parameter defined by Eq. (27)
/� nanoparticle volume fraction
/ relative nanoparticle volume fraction, /��/�0

/�1�/�0

Superscripts
� dimensional variable (used from Section 4 onwards)
0 perturbation variable

Subscript
b basic solution
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Likewise it appears that studies involving Brownian motion and
porous media are confined to deposition phenomena and so are
irrelevant to the present investigation.

The present authors [13] have written a companion paper on
the Rayleigh–Bénard problem.
2. Conservation equations for a nanofluid

First, we outline the derivation of conservation equations appli-
cable to a nanofluid in the absence of a solid matrix. Later we mod-
ify these equations to the case of a porous medium saturated by
the nanofluid.

The Buongiorno model treats the nanofluid as a two-component
mixture (base fluid plus nanoparticles) with the following
assumptions:

(1) incompressible flow,
(2) no chemical reactions,
(3) negligible external forces,
(4) dilute mixture,
(5) negligible viscous dissipation,
(6) negligible radiative heat transfer,
(7) nanoparticles and base fluid locally in thermal equilibrium.

In Sections 2 and 3, all the variables are dimensional. The con-
tinuity equation for the nanofluid is

r � v ¼ 0: ð1Þ

Here v is the nanofluid velocity.
The conservation equation for the nanoparticles in the absence

of chemical reactions is
@/
@t
þ v � r/ ¼ � 1

qp
r � jp; ð2Þ

where / is nanoparticle volume fraction, qp is the nanoparticle
mass density and jp is the diffusion mass flux for the nanoparticles,
given as the sum of two diffusion terms (Brownian diffusion and
thermophoresis) by

jp ¼ jp;B þ jp;T ¼ �qpDBr/� qpDT
rT
T
: ð3Þ

(Thermophoresis is the ‘‘particle” equivalent of the Soret effect in
gaseous or liquid mixtures.)

Here DB is the Brownian diffusion coefficient given by the
Einstein–Stokes equation

DB ¼
kBT

3pldp
; ð4Þ

where kB is the Boltzmann’s constant, l is the viscosity of the fluid
and dp is the nanoparticle diameter. Use has been made of the
expression

VT ¼ �~b
l
q
rT
T

ð5Þ

for the thermophoretic velocity VT . Here q is the fluid density and
the proportionality factor ~b is given by

~b ¼ 0:26
k

2kþ kp
; ð6Þ

where k and kp are the thermal conductivities of the fluid and the par-
ticle material. Hence the thermophoretic diffusion flux is given by

jp;T ¼ qp/VT ¼ �qpDT
rT
T
; ð7Þ
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where the thermophoretic diffusion coefficient is given by

DT ¼ ~b
l
q

/: ð8Þ

Eqs. (2) and (3) then produce the conservation equation in the form

@/
@t
þ v � r/ ¼ r � DBr/þ DT

rT
T

� �
: ð9Þ

The momentum equation for a nanofluid takes the same form as for
a pure fluid, but it should be remembered that l is a strong function
of /. If one introduces a buoyancy force and adopts the Boussinesq
approximation, then the momentum equation can be written as

q
@v
@t
þ v � rv

� �
¼ �rpþ lr2v þ qg; ð10Þ

where

q ¼ /qp þ ð1� /Þqf : ð11Þ

The nanofluid density q can be approximated by the base-fluid den-
sity qf when / is small. Then, when the Boussinesq approximation
is adopted the buoyancy term is approximated by

qg ffi ½/qp þ ð1� /Þfqð1� bðT � T0ÞÞg�g: ð12Þ

The thermal energy equation for a nanofluid can be written as

qc
@T
@t
þ v � rT

� �
¼ �r � qþ hpr � jp; ð13Þ

where c is the nanofluid specific heat, T is the nanofluid tempera-
ture, hp is the specific enthalpy of the nanoparticle material and q
is the energy flux, relative to a frame moving with the nanofluid
velocity v, given by

q ¼ �krT þ hpjp; ð14Þ

where k is the nanofluid thermal conductivity. Substituting Eq. (14)
in Eq. (13) yields

qc
@T
@t
þ v � rT

� �
¼ r � ðkrTÞ � cpjp � rT: ð15Þ

In deriving this equation use has been made of a vector identity and
the fact (deriving from assumption (7)) that rhp ¼ cprT , where cp

is the nanoparticle specific heat of the material constituting the
nanoparticles, while c is the specific heat (at constant pressure) of
the fluid. Then substitution of Eq. (3) in Eq. (15) gives the final form

qc
@T
@t
þ v � rT

� �
¼ r � ðkrTÞ þ qpcp DBr/ � rT þ DT

rT � rT
T

� �
:

ð16Þ
3. Conservation equations for a porous medium saturated by
a nanofluid

We consider a porous medium whose porosity is denoted by e
and permeability by K. A subscript s will now be used to denote
properties of the solid matrix. The Darcy velocity is denoted by
vD. This is related to v by vD ¼ ev. We now have to deal with the
following four field equations (corresponding to Eqs. (1), (10),
(16), (9)), for total mass, momentum, thermal energy and nanopar-
ticles, respectively

r � vD ¼ 0; ð17Þ

q
1
e
@vD

@t
þ 1

e2 vD � rvD

� �
¼ �rpþ ~lr2vD �

l
K

vD þ ½/qp

þ ð1� /Þfqð1� bðT � T0ÞÞg�g; ð18Þ
ðqcÞm
@T
@t
þ ðqcÞf vD � rT ¼ r � ðkmrTÞ

þ eðqcÞp DBr/ � rT þ DT
rT � rT

T

� �
;

ð19Þ

@/
@t
þ 1

e
vD � r/ ¼ r � DBr/þ DT

rT
T

� �
: ð20Þ

Here we have introduced the effective viscosity ~l, the effective heat
capacity ðqcÞm and the effective thermal conductivity km of the por-
ous medium.

In deriving Eqs. (17)–(20) we have assumed that the Brownian
motion and thermophoresis processes remain coherent while vol-
ume averages over a representative elementary volume are taken.
This assumption can be questioned. In the context of modelling
transport in porous media, Eqs. (17) and (18) are standard. Eq.
(20) involves just intrinsic quantities in the sense that the average
is being taken over the nanofluid only and the solid matrix is not
involved. The question thus reduces to whether the terms within
the square brackets on the right-hand side of Eq. (19) need modi-
fication. We recall that in nanofluids the particles are so small that
for practical purposes they remain in suspension in a uniform man-
ner. We emphasize our assumption that the nanoparticles are sus-
pended in nanofluid using either surfactant or surface charge
technology, something that prevents particles from agglomeration
and deposition on the porous matrix. We suggest that then it is
reasonable to assume as a first approximation that no modification
to Eq. (19) is necessary.

4. Application to the Horton–Rogers–Lapwood problem

We select a coordinate frame in which the z-axis is aligned ver-
tically upwards. We consider a horizontal layer of a porous med-
ium confined between the planes z� ¼ 0 and z� ¼ H. From now on
asterisks are used to denote dimensional variables (previously an
asterisk has not been needed because all the variables were dimen-
sional). Each boundary wall is assumed to be impermeable and
perfectly thermally conducting. The temperatures at the lower
and upper wall are taken to be T�h and T�c , the former being the
greater. For simplicity, Darcy’s law is assumed to hold and the
Oberbeck–Boussinesq approximation is employed. Homogeneity
and local thermal equilibrium in the porous medium are assumed.
The reference temperature is taken to be T�c . In the linear theory
being applied here the temperature change in the fluid is assumed
to be small in comparison with T�c . Eqs. (18)–(20) take the form

0 ¼ �r�p� � l
K

v�D þ /�qp þ ð1� /�Þfqð1� bðT� � T�cÞÞg
h i

g; ð21Þ

ðqcÞm
@T�

@t�
þ ðqcÞf v�D � rT� ¼ kmr�2T� þ eðqcÞp DBr�/� � r�T�½

þ DT=T�c
� �

r�T� � r�T�
�
; ð22Þ

@/�

@t�
þ 1

e
v�D � r�/� ¼ DBr�2/� þ DT=T�c

� �
r�2T�: ð23Þ

We write v�D ¼ ðu�; v�;w�Þ.
We assume that the temperature and the volumetric fraction of

the nanoparticles are constant on the boundaries. Thus the bound-
ary conditions are

w� ¼ 0; T� ¼ T�h; /� ¼ /�0 at z� ¼ 0; ð24Þ
w� ¼ 0; T� ¼ T�c ; /� ¼ /�1 at z� ¼ H: ð25Þ

We recognize that our choice of boundary conditions imposed on /�

is somewhat arbitrary. It could be argued that zero particle flux on
the boundaries is more realistic physically, but then one is faced
with the problem that it appears that no steady-state solution for
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the basic conduction equations is then possible, so that in order to
make analytical progress it is necessary to freeze the basic profile
for /�, and at that stage our choice of boundary conditions is seen
to be quite realistic.

We introduce dimensionless variables as follows. We define

ðx; y; zÞ ¼ ðx�; y�; z�Þ=H; t ¼ t�am=rH2;

ðu;v ;wÞ ¼ ðu�;v�;w�ÞH=am; p ¼ p�K=lam;

/ ¼ /� � /�0
/�1 � /�0

; T ¼ T� � T�c
T�h � T�c

; ð26Þ

where

am ¼
km

ðqcPÞf
; r ¼ ðqcPÞm

ðqcPÞf
: ð27Þ

Then Eq. (17) and (21)–(25) take the form:

r � v ¼ 0; ð28Þ

0 ¼ �rp� v � Rmêz þ RaTêz � Rn/êz; ð29Þ

@T
@t
þ v � rT ¼ r2T þ NB

Le
r/ � rT þ NANB

Le
rT � rT; ð30Þ

1
r
@/
@t
þ 1

e
v � r/ ¼ 1

Le
r2/þ NA

Le
r2T; ð31Þ

w ¼ 0; T ¼ 1; / ¼ 0 at z ¼ 0; ð32Þ

w ¼ 0; T ¼ 0; / ¼ 1 at z ¼ 1: ð33Þ

Here

Le ¼ am

DB
; ð34Þ

Ra ¼
qgbKH T�h � T�c

� �
lam

; ð35Þ

Rm ¼
qp/

�
1 þ q 1� /�1

� �h i
gKH

lam
; ð36Þ

Rn ¼
ðqp � qÞ /�1 � /�0

� �
gKH

lam
; ð37Þ

NA ¼
DT T�h � T�c
� �

DBT�c /�1 � /�0
� � ; ð38Þ

NB ¼
eðqcÞp
ðqcÞf

/�1 � /�0
� �

: ð39Þ

The parameter Le is a Lewis number and Ra is the familiar thermal
Rayleigh–Darcy number. The new parameters Rm and Rn may be
regarded as a basic-density Rayleigh number and a concentration
Rayleigh number, respectively. The parameter NA is a modified dif-
fusivity ratio and is somewhat similar to the Soret parameter that
arises in cross-diffusion phenomena in solutions, while NB is a mod-
ified particle-density increment.

In the spirit of the Oberbeck–Boussinesq approximation, Eq.
(29) has been linearized by the neglect of a term proportional to
the product of / and T. This assumption is likely to be valid in
the case of small temperature gradients in a dilute suspension of
nanoparticles.

4.1. Basic solution

We seek a time-independent quiescent solution of Eqs. (28)–
(33) with temperature and nanoparticle volume fraction varying
in the z-direction only, that is a solution of the form

v ¼ 0; T ¼ TbðzÞ; / ¼ /bðzÞ:
Eqs. (30) and (31) reduce to

d2Tb

dz2 þ
NB

Le
d/b

dz
dTb

dz
þ NANB

Le
dTb

dz

� �2

¼ 0; ð40Þ

d2/b

dz2 þ NA
d2Tb

dz2 ¼ 0: ð41Þ

Using the boundary conditions (32) and (33), Eq. (41) may be inte-
grated to give

/b ¼ �NATb þ ð1� NAÞzþ NA; ð42Þ

and substitution of this into Eq. (40) gives

d2Tb

dz2 þ
ð1� NAÞNB

Le
dTb

dz
¼ 0: ð43Þ

The solution of Eq. (43) satisfying Eqs. (32) and (33) is

Tb ¼
1� e�ð1�NAÞNBð1�zÞ=Le

1� e�ð1�NAÞNB=Le : ð44Þ

The remainder of the basic solution is easily obtained by first substi-
tuting in Eq. (42) to obtain /b and then using integration of Eq. (29)
to obtain pb.

According to Buongiorno [5], for most nanofluids investigated
so far Le/ /�1 � /�0

� �
is large, of order 105–106, and since the nano-

particle fraction decrement /�1 � /�0
� �

is typically no smaller than
10�3 this means so that Le is large, of order 102–103, while NA is
no greater than about 10. Then the exponents in Eqs. (43) and
(44) are small and so to a good approximation one has

Tb ¼ 1� z; ð45Þ

and so

/b ¼ z: ð46Þ
4.2. Perturbation solution

We now superimpose perturbations on the basic solution. We
write

v ¼ v0; p ¼ pb þ p0; T ¼ Tb þ T 0; / ¼ /b þ /0; ð47Þ

substitute in Eqs. (28)–(33), and linearize by neglecting products of
primed quantities. The following equations are obtained when Eqs.
(45) and (46) are used.

r � v0 ¼ 0; ð48Þ
0 ¼ �rp0 � v0 þ RaT 0êz � Rn/0êz; ð49Þ
@T 0

@t
�w0 ¼ r2T 0 þ NB

Le
@T 0

@z
� @/

0

@z

� �
� 2NANB

Le
@T 0

@z
; ð50Þ

1
r
@/0

@t
þ 1

e
w0 ¼ 1

Le
r2/0 þ NA

Le
r2T 0; ð51Þ

w0 ¼ 0; T 0 ¼ 0; /0 ¼ 0 at z ¼ 0 and at z ¼ 1: ð52Þ

It will be noted that the parameter Rm is not involved in these and
subsequent equations. It is just a measure of the basic static pres-
sure gradient.

For the case of a regular fluid (not a nanofluid) the parameters
Rn, NA and NB are zero, the second term in Eq. (51) is absent be-
cause d/b=dz ¼ 0 and then Eq. (51) is satisfied trivially. The
remaining equations are reduced to the familiar equations for the
Horton–Roger–Lapwood problem.

The six unknowns u0;v 0;w0; p0; T 0;/0 can be reduced to three by
operating on Eq. (49) with êz � curl curl and using the identity
curl curl � grad div �r2 together with Eq. (48).

The result is

r2w0 ¼ Rar2
HT 0 þ Rnr2

H/0: ð53Þ
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Here r2
H is the two-dimensional Laplacian operator on the horizon-

tal plane.
The differential Eqs. (53), (50), (51) and the boundary condi-

tions (52) constitute a linear boundary-value problem that can
be solved using the method of normal modes.

We write

ðw0; T 0;/0Þ ¼ ½WðzÞ;HðzÞ;UðzÞ� expðst þ ilxþ imyÞ; ð54Þ

and substitute into the differential equations to obtain

ðD2 � a2ÞW þ Raa2H� Rna2U ¼ 0; ð55Þ

W þ D2 þ NB

Le
D� 2NANB

Le
D� a2 � s

� �
H� NB

Le
DU ¼ 0; ð56Þ

1
e

W � NA

Le
ðD2 � a2ÞH� 1

Le
ðD2 � a2Þ � s

r

� �
U ¼ 0; ð57Þ

W ¼ 0; H ¼ 0; U ¼ 0 at z ¼ 0 and at z ¼ 1; ð58Þ

where

D � d
dz

and a ¼ ðl2 þm2Þ1=2
: ð59Þ

Thus a is a dimensionless horizontal wavenumber.
For neutral stability the real part of s is zero. Hence we now

write s ¼ ix, where x is real and is a dimensionless frequency.
We now employ a Galerkin-type weighted residuals method to

obtain an approximate solution to the system of Eqs. (55)–(58). We
choose as trial functions (satisfying the boundary conditions)

Wp ¼ Hp ¼ Up ¼ sin ppz; p ¼ 1;2;3; . . . ð60Þ

write

W ¼
XN

p¼1

ApWp; H ¼
XN

p¼1

BpHp; U ¼
XN

p¼1

CpUp; ð61Þ

substitute into Eqs. (55)–(57), and make the expressions on the left-
hand sides of those equations (the residuals) orthogonal to the trial
functions, thereby obtaining a system of 3N linear algebraic equa-
tions in the 3N unknowns Ap;Bp; Cp; p ¼ 1;2; . . . ;N. The vanishing
of the determinant of coefficients produces the eigenvalue equation
for the system. One can regard Ra as the eigenvalue. Thus Ra is
found in terms of the other parameters.

5. Results and discussion

5.1. Non-oscillatory convection

First, we consider the case of non-oscillatory instability, when
x ¼ 0.

For a first approximation we take N ¼ 1. This produces the
result

Ra ¼ ðp
2 þ a2Þ2

a2 � NA þ
Le
e

� �
Rn: ð62Þ

Finding the minimum as a varies results in

Ra ¼ 4p2 � NA þ
Le
e

� �
Rn; ð63Þ

with the minimum being attained at a ¼ p. We recognize that in
the absence of nanoparticles we recover the well-known result that
the critical Rayleigh number is equal to 4p2. Usually when one em-
ploys a single-term Galerkin approximation in this context one gets
an overestimate by about 3% (e.g. 1750 instead of 1708 in the case
of the standard Bénard problem) but in this case the approximation
happens to give the exact result.

As we have noted, for a typical nanofluid Le is of order 102–
103 and NA is not much greater than 10. Hence the coefficient
of Rn in Eq. (63) is large and negative. Thus under the approxima-
tions we have made so far we have the result that the presence of
nanoparticles lowers the value of the critical Rayleigh number,
usually by a substantial amount, in the case when Rn is positive,
that is when the basic nanoparticle distribution is a top-heavy
one.

It will be noted that in Eq. (63) the parameter NB does not
appear. The instability is almost purely a phenomenon due to
buoyancy coupled with the conservation of nanoparticles. It is
independent of the contributions of Brownian motion and thermo-
phoresis to the thermal energy equation. Rather, the Brownian
motion and thermophoresis enter to produce their effects directly
into the equation expressing the conservation of nanoparticles so
that the temperature and the particle density are coupled in a par-
ticular way, and that results in the thermal and concentration
buoyancy effects being coupled in the same way. It is useful to
emphasize this by rewriting Eq. (63) in the form

Raþ Le
e
þ NA

� �
Rn ¼ 4p2; ð64Þ

and noting that the left-hand side is the linear combination of the
thermal Rayleigh number Ra and the concentration Rayleigh num-
ber Rn. The problem is analogous to the double-diffusive problem
discussed in Section 9.1.1 of Nield and Bejan [14]. It is also analo-
gous to the bioconvection problem discussed by Kuznetsov and
Avramenko [15].

We have defined Rn in a way so that it is positive when the
applied particle density increases upwards (the destabilizing situ-
ation). We note that Ra takes a negative value when Rn is suffi-
ciently large. In this case the destabilizing effect of concentration
is so great that the bottom of the fluid layer must be cooled relative
to the top in order to produce a state of neutral stability.

We emphasize that the simple expression in Eq. (63) arises
because the Lewis number has been assumed to be large. In order
to estimate the contribution of the terms involving NB we have
investigated the two-term Galerkin results. The expression in the
eigenvalue equation is complicated and it is difficult to make
a statement that is simultaneously precise, simple and general.
However, it is clear that the functions of NB are of second degree.
We conclude that for practical purposes Eq. (64) is a good
approximation.

5.1.1. Oscillatory convection
We now consider the case x – 0. We confine ourselves to the

one-term Galerkin approximation. The eigenvalue equation now
takes the form

Raa2 J
Le
þ ix

r

� �
þ Rna2 NAJ

Le
þ J þ ix

e

� �
¼ JðJ þ ixÞ J

Le
þ ix

r

� �
;

ð65Þ

where for shorthand we have written

J ¼ p2 þ a2: ð66Þ

The real and imaginary parts of Eq. (65) yield

Raa2

Le
þ Rna2 NA

Le
þ 1

e

� �
¼ J2

Le
�x2

r
; ð67Þ

x
Raa2

r
þ Rna2

e
� J2

Le
� J2

r

( )
¼ 0: ð68Þ

Again the critical value of a is found to be p. Hence one obtains the
results



Fig. 1. Sketch of the stability and instability domains.
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Ra
r
þ Rn

e
¼ 4p2 1

Le
þ 1

r

� �
; ð69Þ

Lex2

p2r
¼ 4p2 � Raþ Rn NA þ

Le
e

� �� �
: ð70Þ

In order for x to be real it is necessary that

Raþ Rn NA þ
Le
e

� �
6 4p2: ð71Þ

Hence Eq. (69) gives the oscillatory stability boundary when Eq.
(71) holds, and the angular frequency x of the oscillation is given
by Eq. (70). A sketch of RnðNA þ Le=eÞ versus Ra is given in Fig. 1.
The sketch is made on the assumption that ðeNA þ LeÞ=r is greater
than unity. If that inequality is reversed than the labels on the axes
need to be swapped around. The stability diagram is qualitatively
similar to Fig. 9.2 in [14] which pertains to the double-diffusive
Horton–Rogers–Lapwood problem.

There appears to be a qualitative discrepancy between our re-
sults and Fig. 4(b) in Tzou [6,7]. This figure indicates that the anal-
ysis in Tzou [6,7] leads to the prediction that the critical Rayleigh
number is reduced by a substantial amount in the bottom-heavy
case, whereas our analysis leads to a predicted increase in the
value of the critical Rayleigh number for non-oscillatory instability
in this case. Tzou offers no physical explanation for the substantial
reduction. Tzou [6,7] uses the symbol Le to denote a Lewis number
divided by the nanoparticle fraction decrement rather than a regu-
lar Lewis number. This means that his parameter Le tends to infin-
ity as the nanoparticle fraction decrement tends to zero, i.e. in the
limit as the nanofluid is replaced by a regular fluid. Accordingly, we
hypothesize that it is possible that the solution obtained by Tzou
[6,7] may become singular in some sense in this limit.
6. Conclusions

We have studied analytically using linear instability theory the
onset of convection in a horizontal layer of a porous medium sat-
urated by a nanofluid, employing a model used for the nanofluid
that incorporates the effects of Brownian motion and thermopho-
resis. We found that for a typical nanofluid (for which the Lewis
number is large) the primary contribution of the nanoparticles is
via a buoyancy effect coupled with the conservation of nanoparti-
cles, with the contribution of nanoparticles to the thermal energy
equation being a second-order effect.

In this pioneering paper, we have employed a Darcy model for
the momentum equation. We do not anticipate that the inclusion
of a Brinkman term in that equation will have a major qualitative
effect. Rather, the expected result would be that the value 4p2 is
replaced by a larger value Ra0 that depends on the hydrodynamic
boundary conditions and increases with increase of the Darcy
number. A consequence of the increase in Ra0 is that the change
in the value of Ra, for a given value of Rn, decreases as a percentage
of the value of Ra0. Thus, for example, a change from free–free
boundary conditions to the more restrictive rigid–rigid boundary
conditions, something that increases the value of Ra0, leads to a de-
crease in the sensitivity of Ra to a given change in Rn.
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